

Documentation

Introduction

Zippy is an Object Oriented PHP library that aim to ease the use of the archive
manipulation by providing a set of adapters that will use command line utilities or PHP
extensions depending on the environment your run it

Zippy currently supports the following utilities :

	GNU TAR [http://www.gnu.org/software/tar/manual/]

	BSD TAR [http://www.freebsd.org/cgi/man.cgi?query=tar&sektion=1]

	ZIP [http://www.info-zip.org/]

And deals with the following archive formats :

	tar

	zip

	tbz2

	tbz

	tgz

Installation

We rely on composer [http://getcomposer.org/] to use this library. If you do
not still use composer for your project, you can start with this composer.json
at the root of your project :

{
 "require": {
 "alchemy/zippy": " ~0.1"
 }
}

Install composer :

Install composer
curl -s http://getcomposer.org/installer | php
Upgrade your install
php composer.phar install

You now just have to autoload the library to use it :

<?php
require 'vendor/autoload.php';

use Zippy\Zippy;

$zippy = Zippy::load();

This is a very short intro to composer.
If you ever experience an issue or want to know more about composer,
you will find help on their web site composer [http://getcomposer.org/].

Basic Usage

The Zippy library is very simple and consists of a collection of adapters that
take over for you the most common (de)compression operations (create, list
update, extract, delete) for the chosen format.

Example usage

<?php

use Alchemy\Zippy;

$zippy = Zippy::load();

// creates
$archiveZip = $zippy->create('archive.zip');

// updates
$archiveZip->addMembers(array(
 '/path/to/file',
 '/path/to/file2',
 '/path/to/dir'
),
 $recursive = false
);

// deletes
$archiveZip->removeMembers('/path/to/file2');

// lists
foreach ($archiveZip as $member) {
 if ($member->isDir()) {
 continue;
 }

 echo $member->getLocation(); // outputs /path/to/file
}

// extracts
$archiveZip->extract('/to/directory');

Zippy comes with a strategy pattern to get the best adapter according to the
platform you use and the availability of the utilities.

The right adapter will be matched when you open or create a new archive.

Creates or opens one archive

<?php

use Alchemy\Zippy;

$zippy = Zippy::load();

$archiveZip = $zippy->create('archive.zip');
$archiveTar = $zippy->open('/an/existing/archive.tar');

However you may want sometimes gets the adapter for future reuse as the previous
example is good for one shot only because it will create a new adapter object
instance each time you create or open an archive.

Creates or opens a lot of archives

<?php

use Alchemy\Zippy;

$zippy = Zippy::load();

$zipAdapter = $zippy->getAdapterFor('zip');

foreach(array('archive.zip', 'archive2.zip', 'archive3.zip') as $path) {
 $archive = $zipAdapter->open($path);
}

Also sometimes you will face the problem where Zippy will not be able to handle
a specific archive format because archive extension is not recognized or follow
specific named rules.

Luckily with Zippy You can easily define your strategy to get a specific adapter
that handle (de)compression for a specific archive format.

The discrimination factor for getting the right adapter is based upon the
archive extension.

So every time you will work with an archive format not
handled by Zippy you must declare a new strategy for this extension
to match the proper adapter, see Add custom utility strategy.

Recipes

Define custom binary path

Each binary utility comes with two binary path one for the inflator and the other
for the deflator. By default if none is provided, zippy will look to find
the executable by its name;

<?php

use Alchemy\Zippy;

$zippy = Zippy::load();

// customize GNU Tar inflator
$zippy->adapters['gnu-tar.inflator'] = '/usr/local/bin/tar';

// customize ZIP deflator
$zippy->adapters['zip.deflator'] = '/usr/local/bin/unzip';

The following binary are customisable

	gnu-tar.inflator

	gnu-tar.deflator

	bsd-tar.inflator

	bsd-tar.deflator

	zip.inflator

	zip.deflator

Add custom utility strategy

Zippy provides a way to define your custom strategy based on the file extension
to get the most adapted adapters according to your needs.

Each adapters implements a isSupported() method which will be executed for
the defined list of adapters. The first supported adapter will be chosen as
the archive adapter.

Define your custom adapter

Your custom adapter class must implements the
Alchemy\Zippy\Adapter\AdapterInterface.

<?php

use Alchemy\Zippy;

class CustomAdapter implements Zippy\Adapter\AdapterInterface
{
 ...
}

Define a new strategy

Your custom strategy class must implements the
Alchemy\Zippy\Strategy\FileStrategy.

<?php

use Alchemy\Zippy;

class CustomStrategy implements Zippy\Strategy\FileStrategy
{
 public function getAdapters()
 {
 return array(CustomAdapter::newInstance());
 }
 public function getFileExtension()
 {
 return 'tar.custom';
 }
}

Add your custom strategy into zippy

<?php

$zippy = Alchemy\Zippy::load();

// add your strategy
// This strategy for `tar.custom` files has priority over all previously
// registered strategies for this extension
$zippy->addStrategy(new CustomStrategy());

// use it
$archiveTarCustom = $zippy->create('archive.tar.custom');

Handling Exceptions

Zippy throws different types of exception :

	
	\Alchemy\Zippy\Exception\NotSupportedException

	is thrown when current operation is not supported.

	\Alchemy\Zippy\Exception\RunTimeException

	\Alchemy\Zippy\Exception\InvalidArgumentException

All these Exception implements \Alchemy\Zippy\Exception\ExceptionInterface
so you can catch any of these exceptions by catching this exception interface.

Report a bug

If you experience an issue, please report it in our issue tracker [https://github.com/alchemy-fr/Zippy/issues]. Before
reporting an issue, please be sure that it is not already reported by browsing
open issues.

Contribute

You find a bug and resolved it ? You added a feature and want to share ? You
found a typo in this doc and fixed it ? Feel free to send a Pull Request [http://help.github.com/send-pull-requests/] on
GitHub, we will be glad to merge your code.

Run tests

Zippy relies on PHPUnit [http://www.phpunit.de/manual/current/en/] for unit tests. To run tests on your system, ensure
you have PHPUnit [http://www.phpunit.de/manual/current/en/] installed, and, at the root of Zippy execute it :

phpunit

About

Zippy has been written by the Alchemy [http://alchemy.fr/] dev team for Phraseanet [https://github.com/alchemy-fr/Phraseanet], our DAM
software. Try it, it’s awesome !

License

Zippy is licensed under the MIT License [http://opensource.org/licenses/MIT]

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/API/i/arrows.png

_static/up-pressed.png

_static/up.png

_static/API/i/loader.gif

_static/API/i/results_bg.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/API/i/tree_bg.png

nav.xhtml

 Table of Contents

 		
 Documentation

_static/comment-bright.png

_static/img/project.png

_static/ajax-loader.gif

